EDNA: A Safe, Evolvable, Multi-version and
On-demand Deployment System for
GNU/EDMA Applications

David Martinez Oliveira! and Fernando Martin Rodriguez!

University of Vigo. GPI-RV. ETSIT Ciudad Universitaria Vigo Spain,
dmartin@uvigo.es, fmartin@tsc.uvigo.es,
WWW home page: http://wgpi.tsc.uvigo.es/ dmartin/
http://wgpi.tsc.uvigo.es/ fmartin/

Abstract. This paper presents the EDNA deployment system for GNU/EDMA
applications. This system provides a safe multi-version deployment sys-
tem with on-demand installation of applications in network environ-
ments. Different strategies are supported including zero-install and multi-
ple component repository, allowing immediate roll-back to previous ver-
sions. The proposed system supports run-time update of applications
and provides basic self-configuring, self-tuning and self-healing features.
Additionally, the special features of the GNU/EDMA system allows the
propagation of changes easily between design, implementation and main-
tenance stages, working at the component interface level. The proposed
procedures tightly integrates the testing stage in the process of software
evolution and later deployment of it, making deliverable software safer.
They also integrate in common software development practices, including
common version control tools.

1 Introduction

Software installation is a very important milestone within the software develop-
ment cycle, that marks the transition from the development stage to the produc-
tion stage. From this point on, the maintenance stage begins and, as software
evolves several installation process will be carried out with each new version of
the system.

Therefore, the process of installation and versioning of software must be a
confident and well-established procedure within the software development pro-
cedure. Additionally, installation process will depend on the final system, arising
different problems on different kinds of systems. For instance, it is not the same
to install and update an embedded system than a complex computational in-
tensive distributed system. Both systems will evolve in time but the way this
evolution will be carried out and the problems derived of this process will be
very different in each case.

The first installation process is the simpler one. However, it is not trivial,
being very recommendable to provide developers and system administrators with

tools to ensure this first step success. Next installations or updates (as they are
commonly named) are even more complex since several compatibility issues must
be faced in these processes.

In this paper, the installation and versioning system of the GNU/EDMA|7]
environment will be described, and the key ideas behind it will be introduced.
This ideas can be applied in a general way to any other platform.

The GNU/EDMA system is a middleware system specially designed to pro-
vide object oriented programming and component based features to generic
applications, despite of the underlying programming language. The system is
physically a library plus a set of language bindings that provides a development
environment and a set of functions for Object Oriented Programming (OOP)][2]
and Component Based Systems (CBS)[1] development.

So, the philosophy behind GNU/EDMA is to uncouple these facilities (OOP
and CBS) from the programming languages. Programming languages simply
become the tool used by programmers to provide method bodies to the final
application.

This approach allows to set a clear separation between the design and im-
plementation stages of software development and so, introduce an extra degree
of freedom for evolving applications.

This is the first contribution of the GNU/EDMA system, which will allow to
address design evolution in a simple way, as will be shown in this paper.

Moreover, the GNU/EDMA system also provides a basic Component Based
System (CBS) set of features which also uncouples component management from
the implementation architecture. This uncoupling allows management of the
logical architecture of the applications in an independent and abstract way.

The approach presented in this paper tries to face some of the main prob-
lems involved on software installation and further update (evolution) in a simple
and general way, showing how uncoupling of features traditionally associated to
programming languages makes our concerns (installation and evolution) a more
simple tasks.

This paper is organized as follows. Section 2 introduces the GNU/EDMA
features related to software versioning and installing. Section 3 provides the
detailed desing of the EDNA system built on top of facilities introducced in pre-
vious section. Finally a comparison to other systems and some final conclusions
are provided.

2 GNU/EDMA Built-in Features

Before describing our approach to software installation and evolution, the main
features of GNU/EDMA will be introduced in this section. These features are
the ones allowing to build our solution and so, they will state the set of features
for translating our results to any other platform.

2.1 Overview

The name GNU/EDMA stands from the Spanish acronym Entorno de Desarrollo
Modular y Abierto, which can be translated to Modular and Open Development
Environment.

The author of this paper is the main developer of the system since its birth in
1996. In 1997 the system was included in the GNU project[8]. These last years,
GNU/EDMA was extended including most of the research lines in programming
technologies, unveiling GNU/EDMA as a flexible platform for research in these
fields. Technologies like delegation, object inheritance, aspect oriented program-
ming (static and dynamic), software evolution, coordination approaches, etc.
have been added to the system since its born.

GNU/EDMA was, from its inception, an open system aimed to embrace
most of available technologies under a common interface, allowing reuse across
different systems. For this reason, the system provides a set of extension facilities
to deal with interfaces and implementations, and so, it allows simple integration
of available technologies within an unique system.

GNU/EDMA tries to provide an uncoupled Object Oriented Programming
(OOP) and Component Based System (CBS) environment for software develop-
ment. GNU/EDMA provides these facilities as a set of services independent of
the used programming language, allowing their use even on non-OO program-
ming language or non-CB systems.

The main idea behind this approach is treating component systems and ob-
ject oriented programming as orthogonal concerns respect software development.

Object Oriented modelling is a general modelling approach. In general, in-
dependent of software development. Several different systems can be modelled
using this technique, and the key point here is design.

Uncoupling object orientation from software development is translated on
uncoupling software design of software implementation. This way, programming
languages become simple ways to complete a given design. Design and imple-
mentation stages become then clearly separated and related one each other.

This is the current approach seek these last years with the introduction of
modern software modelling tools like the ones based on UML diagramming. The
problem in these tools is that software design got modified when implementation
stage is started. For instance, if the implementation language used for a given
system does not support multiple inheritance and the design was created on that
assumption, design becomes changed to match the final implementation.

Uncoupling an OO constructor like inheritance from the programming lan-
guage will keep the design unmodified (in this very simple example) and then
keep software development simpler.

This approach is being introduced in new development platforms like .Net[4]
and its Common Language Runtime. However, .Net still keeps a tight coupling
with the underlying programming language which introduces the artifacts de-
scribed above, i.e. a languages not supporting multiple inheritance will break a
design using that.

The GNU/EDMA system provides an environment where this will not hap-
pen, since features like inheritance, delegation or aspect programming are pro-
vided by the system not by the used programming language.

After this brief introduction to the philosophy behind the GNU/EDMA sys-
tem, the set of features of the system related to component versioning and in-
stalling will be discussed, since this is the main subject of this work.

2.2 GNU/EDMA Components

The first important concept to understand our approach is the way GNU/EDMA
manages components. Within the GNU/EDMA system, there is no difference
between classes and components, both are composed of an Interface Definition
File (IDF hereinafter), and of an implementation file which contains method
bodies for the associated class.

This is a common approach on OO-based systems but the main difference
with GNU/EDMA is that its IDFs are processed at run-time, instead of using
an external interface compiler. Each time a new component is introduced in the
system, it takes the associated IDF and compiles it to create internal associ-
ated structures. Then the implementation file is also loaded and linked to these
internal structures.

Figure 1 shows graphically the representation of a GNU/EDMA component.

COMPONENT DYNAMIC REPRESENTATION (RUNTIME)
N GNU/EDMA
[Internal Representation
Generates Uses
Y
Interfaces
GNU/EDMA GNU/EDMA -~ In-Memory
Interface Parser Implementation Manager [Component Code
Parses Loads/Adapts
Y A
Component Interface Component Implementation
(IDF, IDL, source, class) (.so, .dll, .class, .exe)
COMPONENT STATIC REPRESENTATION (FILES IN DISK)

Fig.1. GNU/EDMA component parts

Figure 1 shows the parts of a generic GNU/EDMA component. The static
part of the component is composed of two files, one containing implementation
and other containing interface. This files can be the same in practice, but in

the general case two files will be available. These two files forms a GNU/EDMA
component.

The static component representation is translated to two main internal blocks.
Interface file is parsed by a GNU/EDMA interface parser in order to generate
an internal representation of the component’s interface. This representation is
independent of the interface file format.

Implementation manager (also known as SIU proxies) has two main tasks.
First one is to load code into memory and link to it. This process will involve
starting an interpreter or a virtual machine able to run the provided imple-
mentation code. The second task of implementation manager is to wrap access
to implementation from/to the GNU/EDMA system. This task will depend on
the component implementation, so different implementation managers must be
provided for different implementation files.

Interface parsers and implementation managers are themselves GNU/EDMA
components deployed using the default interface and implementation formats
that GNU/EDMA understands.

This architecture has two main advantages.

In first place, as all involved operations are dynamics, it is trivial to define
components at run-time. This feature will make easier installation of components
in a running application and the implementation of dynamic constructors like
metaclasses. GNU/EDMA provides a full interface to perform the task described
above manually and to implement additional interface parsers and implementa-
tion managers.

In second place, this approach allows the system to make more easy the
integration of different development platforms. For instance, the Monna sys-
tem (currently in development) allows to integrate .Net assemblies within the
GNU/EDMA environment. This system provides a special interface parser able
to use the .Net run-time library (actually the Mono implementation) to extract
interface information from .Net assemblies and to integrate them within the
GNU/EDMA system.

The Monna system also provides an implementation manager which allows to
instantiate and execute methods included in the assembly within the GNU/EDMA
system, at the same time that provides to the .Net run-time a set of methods to
access GNU/EDMA.

So, in this case, a component is completely defined with an unique file (a .Net
assembly), but developers can provide the component interface as a separated
file and only use the assembly as a code provider. This separation is important
from the point of view of software evolution and will be discussed later in this

paper.
2.3 Class Repositories
The GNU/EDMA system provides a flexible component repository system to

manage its components. Each repository contains a list of components and some
extra information like the kind of interface parser and implementation manager

to use, its implementation and interface files, component version and some other
information which are of no interest for our current discussion.

By default, the system maintains a global repository, accessible to every
application in the system. Any change to this repository will be reflected on
every GNU/EDMA application in the system, and initially it is intended to hold
common components required by most of the applications. Global repository is
kept in shared memory and any change on it is immediately accessible to all
applications.

Additionally, the system provides tools to define local repositories. Local
repositories are identical to the global repository in structure and access way,
but these repositories are kept in the private address-space of the process using
them.

Developers can set as many repositories as they want, which allow them
to follow different strategies to manage their application components. This ap-
proach allows, for instance, to have a private repository for each application of a
software suite and a common one shared by all the tools in that suite, in addition
to the global one holding core facilities like interfacing to the operating system.

The use of private component repositories makes trivial the deployment of
applications using a zero-install approach. However, the solution provided by
GNU/EDMA has advantages when compared to common zero-install solutions.

In normal zero-install solutions the application and the whole set of com-
ponents are copied to a fixed place and executed from there. Each application
installation produces a new and independent version of the application, and
implies distributing the complete set of components the application requires.

In the general case, this is not a big issue, but, as will be described in section
3.5, where an on-demand network based deployment system is presented, a whole
update of the system will introduce a performance penalty.

The other main difference of the multi-repository approach presented is that
components can be versioned individually. In a normal zero-install approach the
whole set of components should be tagged with the application release version,
even when several of them did not changed from one version to another. This
will produce several versions of the same component which are identical. It will
be possible to manage individual component version separately but this does not
make too much sense when the application and its components are managed as
a whole.

Summing up, the GNU/EDMA multi-repository approach allows to dis-
tribute applications using a zero-install strategy but holding the incremental
solution for component deployment provided by global repositories approaches.
Different versions of a component can be deployed in the same file system place
and all of them are available from this same point at the same time that a
per-component version policy can be kept.

2.4 Class Version

Each GNU/EDMA component has a version number associated. The version
number is composed of two parts; a major version number and a minor version

number. As usual, major version number is used to mark changes on the com-
ponent interface, and minor version number is increased when internal changes
to the component are done but the interface is not changed.

Component version information is kept by system repositories and is man-
aged by the GNU/EDMA component deployment tools. Each time a component
is created a deployment descriptor should be built (unless manual installation
of the component is preferred). This deployment descriptor allows automatic
installation of the component. Figure 2 shows one of these files.

ClassName=HELLO_WORLD
NameSpace=examples/hello
Machine=1386

OperatingSystem=LINUX
Implementation=1ibHELLO_WORLD.so
IDFParser=EDMAIDF

SIUProxy=

MajorVer=2

MinorVer=0
UpdateScript=HELLO_WORLD1_0_2_0.tcc

Fig. 2. GNU/EDMA Component Deployment Descriptor

The deployment descriptor contains the version of the component to be
installed. In the example the descriptor represents a new version (2.0) of the
HELLO_WORLD component.

When the component is installed using this descriptor a new version of the
component is available, and the old version is kept. This new version becomes the
default version, but applications are allowed to force the use of specific versions of
a given component using the edma_class_set_actual_version GNU/EDMA
function.

Therefore, the default GNU/EDMA version management system allows to
install different versions of a given component and allows both to co-exist in the
system.

Note that, if not stated otherwise, any application using the HELLO_WORLD
component in our example will begin using the new version automatically. Ap-
plications must explicitly state the use of specific versions of components.

Finally, note that the UpdateScript field, if provided, will instruct the sys-
tem to carry out a hotswap update of existing instances of the component. This
process will migrate any existing instance to the new version, using the pro-
vided update script to translate state from one version to another. Next section
describes the process.

2.5 Object Hotswap

The different features introduced in previous sections provides tools to evolve
applications in easy ways, that is, each time a new update of a given component
is available, applications using that component are stopped, the component is
installed and the applications restarted. Actually, the presented architecture
allows to install any component at run-time if component does not change its
interface.

Hotswap allows to carry out this process at run-time, without stopping
the applications which is a requirement for certain kind of applications. The
GNU/EDMA hotswap system is in development and can be used for simple
updates with some minor human intervention.

When the deployment descriptor of the component provides the UpdateScript
field, the system will start a hotswap update of the component.

In this case, the component update is hold in a list of pending updates
and a list of target instances is built. The system will then try to update each
component to the new version in a safe execution point using the update script
provided in the deployment INES descriptor.

The whole process is summarised in Figure 3

if UpdateScript is provided
Add update to pending_updates_list
Build list of component instances to update
for each instance_i requiring update
If instance_i is in some thread execution stack
wait until instance_i is released
else
create a new instance using the new component
run UpdateScript to transfer state from old instance to the new one
swap instance_i reference to fix external instance references

Fig. 3. Component Hot swap

This algorithm is executed each time a GNU/EDMA primitive is invoked
from the main application, until all instances get updated and all pending up-
dates applied. So, it is carried automatically without special considerations in
the application being update.

This approach works on simple scenarios but will fail when the update implies
complex dependencies between several components at once. As said above the
system is in development and new approaches to solve this problems are being
prepared.

Next section shows a simple example on how the hotswap system described
so long works.

2.6 From Hello World 1.0 to Hello World 2.0

To illustrate the whole process a complete example is show in this section. In
this example, a HELLO_WORLD component will be updated to a new version which
includes a simple instance state transformation.

The HELLO_WORLD component version 1.0 has the developed for a first release
of a given application,

Due to some customer request, the component must be updated to provide
a per-country greeting. Changing the interface as shown in Figure 4.

Hello World (1.0) Hello World (2.0)
Thane EVOLVES TO +nane
+Country
+greet() T

Fig. 4. Hello World Component Evolution

The original greet method will produce a “Hello Name” message and the new
version of the component must produce a “Hello Name from Country” message.
That is, old instance state must be copied to new one.

To carry out this simple update the following INES descriptor must be pro-
vided.

ClassName=HELLO_WORLD
NameSpace=examples/hello
Machine=i386

OperatingSystem=LINUX
Implementation=1ibHELLO_WORLD.so
IDFParser=EDMAIDF

MajorVer=2

MinorVer=0
UpdateScript=HELLO_WORLD1_0_2_0.tcc

Major version number is increased since the interface of the component was
changed and an update script must be provided to keep instance state between
versions.

The update script is implemented using the TCC (Tiny C Compiler) and is
shown in Figure 5.

The simple function in Figure 5 receives as parameters two component in-
stances. The old one which is being updated and the new one created by the
system when update was possible. Then, the script transfers common state from
an instance to another and initialises the new field not available in the original
component.

After finishing this execution, the system swaps components newid and oldid
so any previous reference to the original instance (oldid) get updated to the
reference the new one (newid).

10

ESint32 HELLO_WORLD_update (OBJID newid, OBJID oldid)
{
EChar buffer[80];

/* Transfer state */
edma_set_prop_strz (newid, "Name",
edma_get_prop_strz (oldid, "Name", buffer));
/* Initialise new state */
edma_set_prop_strz (newid, "Country", "NO COUNTRY");

return O;

Fig. 5. Update script for updating HELLO_-WORLD 1.0 to HELLO_-WORLD 2.0

Update Script Generation Our current work on hotswaping has unveil the
requirement of linking the update process with the design stage, making the
update process flow from the beginning of the application life-cycle. That is,
once the software update is defined, that update is re-introduced in the system
at the analysis stage, reworking the whole cycle towards a new implementation
version.

Working this way, will allow design or refactoring tools to take into account
the changes involved by the update and so automatically generate most of the
actions for components state changes at run-time, making much more probable
the success of the run-time update.

2.7 The Exception Management Interface

The GNU/EDMA system provides a general system-level exception management
subsystem named EMI (Exception Management Interface). This system allows
system administrators to establish how to proceed when a system exceptions is
raised.

The CLASS_NOT_FOUND exception is the one of interest, for our current dis-
cussion.

The EMI subsystem, allows to install a so-called EMI Handler. An EMI
handler is a GNU/EDMA component which will be invoked when a given system
exception is raised.

This solution was used to setup a class server and allow automatic installation
of components from it when a given application is executed. This system is
described in section 2.8.

11

2.8 Previous Experiences

Finally, before introducing the new EDNA architecture for GNU/EDMA ap-
plication deployment, a previous experience on automatic on-demand network
installation will be commented.

This system was introduced in early 1999 on the 0.3r1 version of GNU/EDMA[5].
Several of the concepts introduced in this system will be included in the new
EDNA architecture and for this reason, they worth a brief description in this
section.

The system was designed to work on LAN environments with GNU/EDMA
applications. GNU/EDMA applications run on different machines and each one
keeps its own global repository (local component repositories were introduced in
later versions of the system).

A general component server is configured in the LAN allowing clients to ask
for components using a simple TCP protocol. Each machine running GNU/EDMA
applications has a basic GNU/EDMA installation including a EMI handler able
to connect to the component server and to ask for a specific component.

So, each time an application is started in the environment, CLASS_NOT_FOUND
exceptions are raised for each component it tries to instantiate. The associated
EMI handler connects to the component server providing some basic information
about its running operating system and architecture.

The server responds with a compatible component for each configuration or
with an error, if no component is available. Suitable components for a given
configurations are:

— A native component for the given operating system and machine architecture
— An interpreted version of the requested component.

That version supported component implementation using Java and Guile
(the GNU scripting language). So, if no native version of a given component
is available but an interpreted one was found, this last one is transferred to
the client machine. This approach allows rapid prototyping using multiplatform
languages and later per-component optimization using native versions.

The EMI handler in the client machine gets the implementation and interface
files of the requested component and dynamically registers it in its client repos-
itory, allowing the main applications to continue execution. The system works
similar to virtual memory swap system in operating systems.

This early system allows to improve availability of applications in heteroge-
neous systems supporting multiplatform implementation of components (Java
implementations) and also allows full update of applications wiping out client
repositories and simply re-running applications.

2.9 Lesson Learnt

From all this previous work some important lessons were learnt and they will be
summarised in this section.

12

In first place, applications normally do not need complex deployment sys-
tems. Most of them can be effectively managed using a zero-install strategy an
a simple version control system for the components their use.

This is a consequence of general poor code reuse in applications.

Human factor is critical and code reuse normally only happens when people
reusing code knows it very well. If not, people usually tries to write its own code,
unless a small suite of tools related is being built.

Think for instance on the set of COM-like system available nowadays. Mi-
crosoft developed the first COM system several years ago. From that point on,
Macromedia Director included its Xtra extension system based on the same ar-
chitecture. Mozilla its XPCOM solution, OpenOffice its UNO architecture, etc...
There are subtle differences in each system but all of them are based on the
same basic idea.

The same can be said for the big set of low level helper libraries available.

The reality is that a lot of effort was put on making code reuse easy, but in
practise code reuse is rarely used, except for central core software as for example
desktops.

This is a different discussion but what is important for us, is that most of
the components of a given application are private to this application or to a
small suite of related tools. This makes global component repositories a source
of problems (like the well-known DLL hell in Microsoft platforms).

So, in general, an application (or small suite of applications coming from
the same producer) will be composed by a set of specific components plus a
minimum set of shared components which in general deals with the interface to
common or inevitable systems like the operating system itself, or core framework
foundation classes, desktop interfaces, etc.

In second place, application evolution is a complex task which varies depend-
ing on the kind of application being evolved. Two main groups can be defined;
application which can be stopped and applications which cannot be stopped.

The main difference between them is the way the change is applied. The way
the change is managed and generated is common to both scenarios. In any case,
application evolution must be carried out from the conceptual level to the final
implementation to reflect the changes in the whole process.

This simple and well-known process is not performed normally. Small patches
are applied at the implementation level and a lot of these small patches produces
changes not reflected in the higher level life cycle stages (design, analysis). A big
effort is required to keep all this information synchronised.

This will soon produce hard to maintain applications. The solution is to
produce tools able to keep consistency on all the stages independently of where
the changes are made. Such a tool does not exist at this moment and only partial
solutions are available.

An unification of the way software is managed at the different stages of its

life cycle is required. Such an unification will allow to propagate changes in any
stage almost automatically to the others.

13

Finally, the whole process of application creation and maintenance must be
simple and mostly automatic to avoid problems due to error-prone human ma-
nipulation.

Taking into account all this facts, the design of the EDNA system to de-
ployment and maintenance of GNU/EDMA applications is described in next
section.

3 New EDNA Architecture

In previous sections, the features related to application installation and version-
ing provided by GNU/EDMA were introduced, as well as the current support
provided by the system. However, current support lacks several important fea-
tures which will be fixed by the EDNA architecture.

The goal of this system is to produce a set of tools and procedures to build
GNU/EDMA applications and allow their easy and safe deployment and evolu-
tion.

EDNA should provide an easy way to deploy common components in a system
which will be heavily used by most of the GNU/EDMA applications, and it also
should provide and easy way to deploy applications or small suites sharing a
well-defined set of components.

The system should provide tools for real-time and deferred update to cover
the needs of normal applications and better-non-stop applications.

Finally, the system should provide an appropriated level of automation to
reduce the probability of errors in the processes of evolution and installation of
initial and further versions.

3.1 GNU/EDMA Interfaces Extension

The GNU/EDMA system, as pointed early in this text, makes a clear separation
between interface and implementation for each component it manages.

GNU/EDMA component interfaces are independent entities which bridges
design and implementation stages. Current implementation only captures in-
heritance and “part of” relationships so direct transformation is not complete.
However, the GNU/EDMA interfaces where designed to keep as many informa-
tion as desired even when the system will only get the one it needs.

So it is trivial to add further information within a component interface and
then write tools taking into account this information. This way, the whole design
and implementation information for a given application can be kept in an unique
file, making changes in any of theses stages available to the other.

So the first point to address by the EDNA system is to introduce additional
dependencies within the component interface. The logical targets are: usage,
dependency and association relationships. This additional dependencies are di-
rectly related to implementation, that is, they are abstract entities at the design
level that becomes specific implementation statements . So these relations should
be extracted from the source code, or manually managed by developers.

14

This process is in general not trivial, but using an approach like GNU/EDMA
where component interaction always goes through the GNU/EDMA middleware
layer it will be a lot more easy than using a classical programming language.
Current AOP solution could be helpful in other cases.

The good approach to keep up to date this information is to instrument
unit test suites. At the same time that components get validated by a set of
unit tests, the dependencies of the component are generated, feed-backing the
information to the design stage. This process will also log the exact version of
each component involved in the test so a version map of a tested application can
be generated during testing process.

In the particular case of GNU/EDMA the system must be instrumented in
order to log this information. Instrumentation will be easy since GNU/EDMA
application only use a small set of primitives (method invocation, fields accessor,
object creation and some dynamic inheritance primitives).

Summing up, the first feature of the EDNA system is to extend the GNU/EDMA
interface files to keep additional interface information. This additional informa-
tion will be generated at the test/verification stage and so, automatically (or
mostly automatically) reintroduced in the design stage.

Design tools will work on components interface, managing implementation as
opaque data types represented as a set of relationships among a given component
and the set of the other components it interacts with.

Any change on a component at the implementation level, will be automat-
ically reflected in the design level after testing, what will determine any new
relationship among components due to implementation changes.

Any change at design level will be propagated to implementation level as
a new set of component interfaces which will indicate the required changes in
design. Design to implementation level will suppose, in general, bigger changes
than implementation to design level. This process, design to implementation,
will be, in general, supported by additional documentation to instruct developers
about the implementation of these design changes.

Note otherwise, that design changes should be less frequent that implemen-
tation fixes and in general should imply addition of new features and slight
extension of existing ones.

Figure 6 summarises all this process.

In the left side of the figure the different stages of the software life cycle are
show. The right side of the figure shows the set of products generated in each
stage and stored in the version control system.

The component interfaces are first generated at the design stage, and from
that point on, they can be modified at any other stage of the development
process, below the design. Implementation, testing or even deployment could
produce changes in the components interface not envisioned at the early design
stage, and then, interface changes may be induced.

In the same way, the code produced in the implementation stage and the
deployment information (and interface relationships) stated at the testing stage
are shared from any other stage below the one generated them.

15

SOFTWARE LIVE CYCLE SOFTWARE PRODUCTS
IN VERSION CONTROL SYSTEM

> Analisys
> Design
I_ Implementation

Testing

Interfaces
Docs

Code
Deployment Deploy

Fig. 6. Software Products vs Software Life Cycle

As explained above in the text, modification of any software product must
be supported by additional procedures to communicate the different members
of the development team. These procedures would be organization dependant
and are beyond the scope of this paper. The key point in this discussion, is
that all the software life cycle stages works on the same items, which are clearly
bounded.

3.2 Implementation

During implementation stage, several sub-version of the software components,
normally named releases are generated and kept in a version control system.

The version control system will also keep a set of tags of these releases which
eventually will become a deliverable version. Normally the process of tagging
or freezing a version consists on taking an snapshot of the current development
version which has been appropriated checked. However, in order to keep evolvable
versions of an application additional steps should be carried out.

Therefore, the tagging process should be extended with the following steps:

— Generation of a release version
The system should check immediate previous tagged version and verify how
interfaces of the components (which are also kept in the version control
system) had changed.
If no change in the interface was detected, only the minor version number
of the component will be updated. Actually, minor version number should
only be increased if there is any change in component implementation. If
interface changes are detected, major version number is updated and further
steps required.

— Generation of update scripts
If run-time update is required, at this point a set of update scripts should be
generated. The information hold by the component interfaces will be enough
to automatically generate any syntactical related transformation, but human
intervention is required to face semantic related and arbitrary changes (for
example, name changes).

16

Most of the information required to generate update scripts could be gen-
erated automatically if a refactoring tool is used to carry out these inter-
face changes. The discussion of such a tool features is out of the scope of
these paper. To know more about current research on these field using the
GNU/EDMA system readers can check [6]

— Final Tagging
Once the real version of the component got determined, the tagging process
(using the modified interface files) can proceed. The process will involve the
“check in” of all the code, as usual, as well as all the side information gener-
ated about version to version transition, including the information generated
by the unit test process.
Note that if no run-time update is required, the second step of the process
can be removed.

So, a version release of a EDNA evolvable application will include the follow-
ing elements:

— A new set of components with updated version numbers

— A complete list of component version list used by the application
— An optional set of update scripts for run-time update

— An optional main application if not implemented as a component.

Following this process the version control system will store a new version tag
of a given software system with all the information required for its deployment.

3.3 The NIL Application Approach

Before continuing, the concept of NIL application will be introduced. The con-
cept of implementing the main application as a class is central to modern pro-
gramming languages like Java or C# which, actually make this mandatory.

However, given this fact, and in order to make simpler deployment of new
versions of a given application, a small modification of this concept will be in-
troduced and named NIL Application.

Following this approach an unique executable program will exists in the sys-
tem. This program just sets up appropriated properties to allow the application
locate its components. Then instantiates the main application class and starts
it.

Note that this is the normal way a Java application is started, using the static
method Main in the class being executed. The NIL application approach intro-
duce a subtle difference. For the Java case, simply implies a more sophisticated
loader, similar to the one provided by the Java Web Start Technology.

For the case of the GNU/EDMA system, such a program will be as simple
as the shown in Figure 7

The main difference between the code shown in Figure 7 and, for instance, a
normal Java application, is that when the application is executed (method run),
the whole system, including its EMI handlers (see section 2.7) are up and ready

17

#include <edma.h>

int
main (int argc, char *argv[])
{

0BJID app;

if (argc != 2)
{
edma_printf_err ("Invalid Number of Parameters. Aborting\n");
return -1;

}
EDMAInit();

if ((app = edma_new_obj (argv[1])) < 0)

edma_printf_err ("Cannot execute application ’%s’\n", argv[1]);
else

edma_met3 (app, "run", argc, argv);

EDMAEnd () ;

Fig. 7. Basic GNU/EDMA Nil Application

to be used, including the required logic to look for missing classes and manage
component versioning.

Note, that the concept is quiet simple, it is just a minor extension of the cur-
rently available solutions for application loading. However, building applications
this way, within the GNU/EDMA environment, will show several advantages on
application deployment and versioning.

3.4 Deployment

At this point in our discussion, deployment of applications using the procedure
described up to now is basically trivial for applications that do not need run-time
updates.

Now an application is a bunch of components which will be installed to differ-
ent repositories in the system. The main application becomes another component
which will also be installed the same way.

This approach allows several different configurations. In this paper only one
is presented as an example on how the system will work.

In our example four main component repositories will be available:

— A global repository holding system wide shared components
— A suite repository targeted to hold components used for a small suite of
tools, normally from the same provider

18

— An application specific repository holding components specific for a given
application

— An application component repository holding the main component applica-
tion

So, an application being deployed will be composed of the following elements:

— The main application component

— A component version file holding the tested components the application is
know to work on.

— A package containing components to be installed in the application private
repository

— A package containing components to be installed in an optional application
suite repository

— A package containing components to be installed to the global repository.
This package will in general be distributed apart and referenced by the ap-
plication throughout the component version file

— A resource package containing data required by the application which will
be installed as a directory in the local repository

Installation process simply implies checking availability of required shared
components (the ones in the global repository) and then put each component in
its appropriated repository. Optionally, the creation of the application private
repository will be required for the first time installation.

Note that, since GNU/EDMA allows the installation of different versions of
the same component, the following holds:

— Previous version of the application is not modified neither removed. On any
problem with new version previous version is still available.

— By the same reason, any modification to the application suite repository will
not break any member of the suite, since the old versions of every component
are still available.

Finally, note that the list of every component used by an application along
with its exact version is a implicit part of the package release. This kind of infor-
mation is mandatory for certain software development standards and software
life cycle recommendations. Normally, this information is provides in a docu-
ment named “Software Version Description” deliverable along with the software
package. The approach presented here will include most of the content of this
deliverable as part of the main software package.

3.5 EDNA Class Server. Transparent Installation

The architecture presented so far allows to setup a transparent on-demand in-
stallation system using the network. This kind of systems have the additional
advantage of automatically install only the components of applications that are
actually used.

19

Suppose that an image viewer application is built. That application will use
different components to read and write different image format.

In a normal case, all the components will be installed or user will select
manually them during the installation process. Using a network on-demand in-
stallation strategy, components will be installed when needed and never used
components will never be installed. So, application got self-configured according
to the use user does of it, saving machine resources.

To achieve this, the system described in section 2.8 will be rebuild taken
into account the new structure of applications described in section 3.4. Figure 8
sketches the general operation of the system.

Client Application

A
Create Component Return componet
Y
| GNU/EDMA |
A\
Componet Component Id
not found
y
Ask for Component N
EMI Handler L Component
CLASS_NOT_FOUND | g Server
<
Deployable Component

A

Deploy Component Component Available

y
Dynamic Component
Client Repositories 4 . P
Installation

Fig. 8. Normal operation of EDNA Transparent Install

The details of this system is beyond the scope of this paper, but some com-
ments are of interest for our current discussion.

In first place, just a small set of classes is required on each system to let it
use the class server. An EMI handler able to communicate to the class server
and some basic communication classes. Actually, this communication classes
could be included within the EMI handler which is the unique class required to
make the system work. This minimal set of classes will be included in the base
GNU/EDMA package which will be once installed on each client machine.

In second place a redundant distributed system can be easily build. Since
the class server is also an executable component, any machine in the system
can launch one of these servers and begin serving files. Initially, the system will
not fully replicate the whole database contained by the class server, but this
functionality is being considered for a small set of nodes of the network.

The only information replicated along the class servers will be the list of
available clients and, therefore, potential backup servers. So, if a client cannot
connect to the class server it will try to connect to other servers in its local

20

backup list. If no server is available the client can launch a new NIL application
using the class server component and share, almost its current repositories. The
discovery procedure for new class server is still to be determined.

This behavior will introduce basic self-healing capabilities to the system,
increasing its availability in the case of a server fault.

This part of the system is in its early development stages and no data is
available at the moment of writing this text. The critical point to measure is
latency on component installation.

In first installation a non negligible time will be used on transfer and install
the basic set of components to begin running the application. However this time
will be less than the time of download the whole application form the net. This
is a strategy used by some applications nowadays.

The reason is that only the components being used are downloaded so it
is expected to have a slight delay each time an user does a new action on the
application. Empirical probes will be carried out soon.

3.6 Application Evolution. Upgrading

The system described so far, will install a given application on-demand but, once
the application got installed it will not evolve directly without human interaction.
To avoid that, applications should check the last version of themselves at
start-up initiating an update process if a new version is available (or almost
asking the user if the process must be started). Note that automatic update is
safe since the old version will always be available and so, application can be
restarted in its old version if the new version is break due to any reason.

The right place to put this is in application initialisation. A helper class will
be developed to perform this check in a transparent way. This class will override
the run method of the application to perform the check before the application
starts. If a new version exists, the helper class will download the new version
and create a new instance of the application giving control to it.

Proceeding this way developers are allowed to determine the update strategy
they want.

— Developers can include the helper class directly in its main application com-
ponent and so choose when to perform the update.

— An special application loader can be provided to let the user choose when
to update an application

— No update strategy is implemented and is the system administrator, who
forces an update of system repositories.

4 Related Works

Application installation, versioning and deployment has not been a very popular
research line in the academic neither in the industry communities. Obviously it
is not the bigger problem within the software development cycle, however it is

21

an intrinsic part of this cycle, and, as has been shown, it affects previous and
later stages of the life cycle.

Traditionally software versioning has been carried out using internal develop-
ment team policies, normally related to the version control system used during
development. Installing and deployment for small application has been reduced
a simple “copy this file to that directory” or to ad-hoc solutions for large scale
systems.

In the field of small application deployment, the GNU/Debian package man-
agement system has been shown this last years as an effective and simple way
to install software. The GNU/Debian solution can manage dependencies at the
level of packages and provides a comprehensive and robust network installation
system. Even solutions for on-demand installation of packages exists like the
auto-apt package.

When compared to our proposed system two main differences can be stated.
In first place our system is specially target to smaller components, meanwhile
GNU/Debian deal with bigger packages which could be decomposed in smaller
one if necesary.

The second difference is that our system is being designed to integrate in-
stallation and deployment within the software life cycle.

The Microsoft .Net platform is maybe the one facing more directly versioning
and installing at the component level. This was a requirement in Windows-based
technologies for a long time after unveiling the well-known DLL Hell of windows
shared libraries and COM services.

.Net framework provides a similar version system to the one presented here
and makes a distinction between global and local components, providing zero-
install deployment of applications. However it only can distinguish between this
two component “repositories”. The system presented in this paper supports
a more flexible management of repositories which allows flexibler deployment
strategies.

The .Net framework also supports the installation of different versions of
the same component and allows forcing the use of a specific version of a given
component, being similar to our system in this way. The NIL Application concept
introduced in this paper is not supported directly, being, at first glance easy to
implement in this platform.

Finally, official documentation on .Net framework does not include informa-
tion about building class loaders like the ones provided by Java. However last
version of the framework seems to provide some of these functionality but its
use is not straightforward.

The other big platform to compare to is Java. Java zero-install approach is
trivial since the introduction of the .jar files. However, Java does not provide
direct support for class versioning and so implementing a version of our solution
will require additional coding of helper classes. On the other hand, Java class
loaders provide a flexible way to set up network on-demand installation systems
like the one described in this paper, being an example of this the Java Web Start
system.

22

From a general point of view, component (and application) versioning is a
manual task for most commonly used development environment, and its link-
ing with the software life cycle is arbitrary and discretionary according to the
development team internal policies.

The approach introduced in this paper is a approximation to integration of
the deployment stage (including versioning, installing and evolution) within the
real life cycle of software development as a live part of the whole process.

5 Conclusions

In this paper a basic procedure for software development was introduced. This
procedure takes into account additional information extracted from the devel-
opment process for making easier software evolution and deployment of new
versions of a given application.

The process also makes the spftware testing stage an integral part of the
sequence, forcing to carry out this stage in order to obtain a safer version of
the software. Testing will produce important deployment information (list of
component versions used) and so, produce an snapshot of a verified working
environment.

All this process has been specifically targeted to GNU/EDMA applications,
however, the main ideas in it can be easily extended to other component based
systems.

Once a deployable version of the application is available, several deployment
strategies can be followed. A GNU/EDMA specific strategy, currently in devel-
opment, has been described.

The concept of NIL application (as a subtle version of the classical application
as a component concept) is introduced to generalise application management
(versioning and installing) in a given system.

This strategy allows to install different versions of applications and compo-
nents side by side, never breaking previous version since they are kept until a
system administrator completely removes them. So reverting to previous versions
is always possible.

The strategy can be extended, with little effort, to work in an small and
secure network environment, making application installation and upgrading a
trivial task which could even be performed by users.

The proposed solutions will provide basic self-configuration of application
and basic self-healing of the whole installation process using a very simple strat-
egy. The system can also expose self-tuning features if different versions of the
components, according to different architectures are also managed.

For the moment no empirical result is available since the system is in devel-
opment stage, but previous similar works carried out some years along do not
make us envision any technical problem in its implementation.

23

References

1. Clemens Szyperski: Component Software: Beyond Object-Oriented Programming.
Addison-Wesley

2. Booch, Grady: Object-oriented analysis and design with applications (2nd ed).
Addison-Wesley Publishing Company (1994)

3. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., Loingtier,
J.-M., and Irwin, J: Aspect-Oriented Programming. In Proc. of ECOOP, Springer-
Verlag (1997).

4. Microsoft Corp: The .Net Framework.
http://msdn2.microsoft.com/en-us/netframework/default.aspx

5. Martinez Oliveira, D., Ferndndez Hermida, X.: Proceso de Instalacin de Aplicaciones
en Red con EDMA. Simposio Espaol de Informtica Distribuda SEID99, Santiago de
Compostela (1999)

6. Martinez Oliveira, D., Ferndndez Hermida, X.: Run-Time Component Extension
and Update. Technical Report. University of Vigo. (2002)

7. Martinez D.: GNU/EDMA Web Page. http://www.gnu.org/software/edma

8. Free Software Foundation: GNU Project. http://www.gnu.org

