Neutral Programming Language Aspects with GNU/EDMA °

Uncoupled Components meet AOP

D. Martinez Oliveira
University Carlos Il
Avda. de la Universidad, n X,
Leganes
Madrid, Spain

dmartin@dei.inf.uc3m.es

ABSTRACT

GNU/EDMA [1] SIU Extension Subsystem was developed
to easily integrate different systems within the GNU/EDMA
programming interface. The general method/property inter-
ception capability of SIU subsystem provides an appropriate
framework for Dynamic Aspect Oriented Programming. As
well, GNU/EDMA neutral programming language architec-
ture allows to set up an AOP environment where applica-
tions and aspects can be written using different program-
ming languages.

General Terms
Aspect-Oriented Programming

1. INTRODUCTION

A great effort has been devoted to bring Aspect-Oriented
Programming (AOP) and Dynamic AOP (DAOP) to an us-
able stage. However, most research efforts and projects in
this field have been oriented towards the Java language and
platform, leaving other development environments out of the
main research stream. Works on Smalltalk [3] or C++ [6]
reasonably cover this issue, but the bulk of research is fo-
cused on Java.

In this paper, an AOP approach is presented, based on the
GNU/EDMA [1] development environment. GNU/EDMA
provides a loosely coupled object-oriented and component-
based programming environment, which can be used from
different programming languages in different platforms.

All the GNU/EDMA features are built against the basic ser-
vices it provides, so any research on the system can be easily

*(Produces the permission block, copyright information and
page numbering). For use with ACM_PROC_ARTICLE-
SP.CLS V2.6SP. Supported by ACM.

C. Fernandez
University Carlos Ill
Avda. de la Universidad, n X,
Leganes
Madrid, Spain

camino@dei.inf.uc3m.es

J. M. Dodero
University Carlos Ill
Avda. de la Universidad, n X,
Leganes
Madrid, Spain

dodero@dei.inf.uc3m.es

exploited from any of the supported platforms. From a gen-
eral point of view, GNU/EDMA is against the generalized
trend to integrate more and more features within the pro-
gramming language. Instead, GNU/EDMA keeps these fea-
tures out of the programming language itself, making them
possible to be used from any platform.

The GNU/EDMA system provides additional facilities be-
yond AOP and a wider view of applicability of AOP in differ-
ent contexts. Concretely, it provides a useful set of Unantic-
ipated Software Evolution (USE) capabilities, which makes
easier to bound the scope of applicability of AOP techniques,
and hence, it provides an appropriate framework for evaluat-
ing the AOP impact on software adaptation and evolution.

As a side discussion, the paper also intends to state the
possibilities of a system like GNU/EDMA to facilitate the
testing of programming approaches in and allow for quick
checks of theoretical models.

The paper is organized as follows. In section 2 a review
of current DAOP techniques is presented. Section 3 states
the main differences between method interception an class
evolution techniques in such kind of systems. In section
4 the GNU/EDMA SIU extension system is presented and
the weaving process for our system is explained. Section 5
illustrates the previous topics by means of a simple example
and finally, section 6 presents some conclusions and future
works.

2. REVIEW OF DAOP APPROACHES

Many works have been recently published about adding dy-
namic behavior to programming environments and software
systems in general. In the DAOP field, three systems can be
highlighted, since they cover the general idea behind most
current approaches.

AspectS [3] provides dynamic aspects to the Smalltalk envi-
ronment. AspectS is a powerful AOP system since it is based
on a very powerful environment (i.e. Smalltalk). However,
its current implementations heavily relies only on that plat-
form. As it also happens with the following systems that will
be remarked, the ideas and approaches presented therein can
be applied in other environments, but the current implemen-
tations prevent their use in heterogeneous systems.

Other two important DAOP systems are specifically tar-
geted to the Java environment, which also prevents its use
from other programming languages and environments. The
first is the PROSE system [5], which provides a powerful
and efficient implementation of dynamic aspects for the Java
platform. PROSE relies on the Java Virtual Machine debug-
ging interface [2], and then, such implementation cannot be
easily ported to other platforms. The other system that is
built on top of Java is JAC [4], which provides more facilities
than just dynamic aspects, as well as a set of ready-made,
predefined aspects for their direct use in applications. JAC
uses bytecode adaptation to modify Java objects at load-time
in order to allow the system to manipulate them. As a
major advantage of JAC, it does not present any low-level
dependency on the Java platform, neither virtual machine
modifications nor language extensions.

All the systems described above rely heavily on the under-
lying programming environment (either SmallTalk or Java
bytecodes). This fact makes harder to port these systems
to other platforms. GNU/EDMA approach is to move all
these facilities out of the implementation environment and
then completely uncouple the DAOP implementation from
it.

When examining deeper DAOP solutions like the described
above, two main issues arise:

e In the end, all approaches try to implement object-
based features. This is a sound approach, because at
the dynamic level the main software unit becomes the
object and not the class —at least in Object Oriented
Programming (OOP).

e DAOP features are implemented in non object-based
environments, which makes the implementation harder
and also makes difficult to keep object and class models
consistent.

Additionally, DAOP solutions heavily rely on specific plat-
forms. This fact makes harder for them to be integrated
within heterogeneous component models like CORBA, which
try to provide a programming language neutral approach.
For example, it is difficult to use any Java-based DAOP
within a CORBA solution when it is required to apply a
Java Aspect to a C++ object. Of course, a suitable solu-
tion can be built for that purpose, but this issue has not
been addressed yet by current DAOP systems.

Finally, there is a trend to use DAOP as a solution for soft-
ware evolution and adaptation. From our point of view, it is
necessary to set clear the scope of application of AOP, and
then select the best-fit approach to each problem. In the
general case, software evolution and adaptation cannot be
considered as a process of adding cross-cutting or orthogonal
behaviors, but it is a class/object-specific and semantically
dependant process that requires special solutions. Moreover,
the need to bring object-based features to class-based envi-
ronments opens the possibility of better evolution and adap-
tation solutions with a better performance and, at the same
time, maintaining the cohesion within the software that is
being modified.

3. METHOD INTERCEPTION VS CLASS

EVOLUTION
Before describing our GNU/EDMA-based DAOP solution,
a brief discussion on when to use AOP is worth it.

Within an OOP solution, when a class is evolved or adapted,
the changes that are applied are specific for that class. In
this situation, the powerful cross-cutting nature behind AOP
becomes degenerated, since an specific aspect is required for
each class being evolved or adapted. In fact, most of evolu-
tionary and adaptation scenarios do not cross-cut class hier-
archies but single hierarchy trees, and it rarely depends only
on adding/updating/removing orthogonal behaviors. More-
over, in the general case object/class evolution requires to
change the interfaces and transfer the state between old in-
stances and the new adapted/evolved ones, specially when
object hot-swapping is required. In such a run-time scenario,
the applicability of DAOP solutions becomes difficult and
tricky. Actually, most of existing DAOP solutions do not
support interface modification, neither object state transfer
per se. However there exists a midway case in our current
discussion. Sometimes there is the need for a certain behav-
ior to be added to a set of related classes somehow, but not
only one or several classes, nor classes that are unrelated
at all. In this case it does not exist a clear way to deter-
mine which is the best suitable way for evolution, and AOP
or solutions like mix-in classes seem equally suitable for the
problem. In these cases, specific details of the change or lim-
itations on the programming environment (for instance, un-
availability of multiple inheritance) will determine the most
appropriate solution.

Current aspect-based environments are essentially based on
method/property interception, or in a more general way,
they are based on the interception of join-points. An aspect
is a piece of code that can be attached to any join-point and
then it is able to intercept invocation of methods, access to
properties, etc. and inject/remove pieces of code at those
points.

Aspects are commonly used to achieve separation of con-
cerns and to apply cross-cutting behaviors to a family of
classes or components. Some classical examples in AOP are
to add a logging facility to a set of classes in an already-
developed application, or to add access control features in a
similar way.

The availability of dynamic AOP solutions let researchers to
envision AOP as a software evolution and adaptation solu-
tion, however it is not well suited for the general case, even
when it results useful in many specific situations.

Better evolutionary solutions exist that are more consistent
than aspects with respecto to long-term software maintain-
ability. Dynamic inheritance and delegation systems, along
with object state transfer support, provide a more suit-
able framework for evolution and adaptation than general
AOP/DAOQP solutions.

At the same time, there are general application changes
that are much easier to apply using AOP/DAOP techniques.
For example, distributed programming is a clear example,
for which AOP techniques result perfectly suitable, since

CLASSA
CLASSA WEAVE ASPECT 52
move_agent move_agent
ASPECT_LOG | O
before |
after #
CLASSB
CLASSB o
move_agent move_agent

Figure 1: Debugging Log Aspect weaving

an unique general behavior (i.e. distribution) will cross-cut
most of classes in the system.

To illustrate these ideas, a simple case study will be dis-
cussed. Suppose we want to add a logging service to a
Mobile Agent System (MAS), like for example our AGNES
MAS implementation [8], which has been developed on top
of GNU/EDMA. In this situation two main scenarios may
arise: a debugging log, or a server log.

3.1 Agent Debugging Log

Debugging of distributed applications that do not share a
common addressing space is difficult to realize, so a debug-
ging facility will be very useful to develop an agent-enabled
application with AGNES.

In this case, it is interesting to follow the flow of execution
of agents moving around a given network. Providing traces
when a given method of an agent begins execution and when
that method finishes will allow developers to check that the
intended execution flow is respected by the system. This
discussion will be centric to method execution for brevity,
but it can be generalized to any other kind of join-point.

In this scenario, arbitrary methods from very different classes
and objects will require logging in different moments, de-
pending on the feature or behavior that requires debugging,
that is, this logging function will cross-cut several unrelated
classes/objects and, in general, it will change with time.
However, such a feature is a temporary one, and is not part
of any evolution process. It is just a short-time required
feature, useful in a brief interval of time for a very concrete
activity, which possibly will not make sense in the future.

In fact, the interesting feature of a DAQOP solution is the
possibility of adding an aspect, debug the application and
then completely remove the aspect and the debugging func-
tionality with it, which is no longer required, or well keep it
latent until it is newly required in future.

Figure 1, illustrates this process. The ASPECT_LOG is weaved
to different classes/objects in the systems intercepting a con-
crete method or set of methods and allowing to add the
operations after and before these methods.

Finally, note that adding a debugging log as described so
far is a completely independent action, not related at all
to the semantics of the classes and objects that adopt it.

EVOLVE

CPU MONITOR AGENT CPU MONITOR AGENT’

check_cpu_usage check_cpu_usage
log_cpu_warn

set_warn_level

MIGRATION MON AGENT MIGRATION MON AGENT '

log_agent_movement

log_agent_movemnts
log_movement_by_host

Figure 2: Each class requires a specific semantic-
compatible extension

Some issues like debugging or network distribution are real
cross-cutting in the sense that they are completely orthogo-
nal to the real semantics of classes and objects using those
actions/behaviors.

3.2 Agent Server Log

Now, what it is required from the mobile agents is to log
information on each host they visit. In this case, since dif-
ferent agents are implemented as different classes, a new
cross-cut scenario emerges, where several classes will share
the conceptual behavior of logging, but each one will want
to log different information.

This latter scenario fits better within an evolution case,
where the added logging service is a missing feature which is
added and, in general, will remain in the system for the fu-
ture. Classes and objects really becomes other ’thing’, they
are not the same ’'thing’ with something added.

However, in this case each agent will have different logging
requirements and even when the general concept of logging
cross-cuts all of them, the specific details for each agent are
usually different.

For example, all the agents will log their arrival to and leave
from a given host, but a CPU load monitor agent will also
log any alarm about excessive CPU usage, or an automatic
migration agent will log which agents were chosen to be
moved to other host and which host was selected for each
moved agent. Figure 2 illustrates the scene. Two classes
evolve in time, and in the general case, new behaviors and
properties are added and removed in this process.

In this scenario, a general logging aspect (for arrival and
leave of agents) is not enough, and specific aspects for each
logging requirement on each agent can arise, but concep-
tually these are not cross-cutting features. This is a case
of class evolution, which implies new versions, releases, up-
dates or patches for existing classes.

Such a real evolution scenario can be better managed by
an evolution solution where individual classes are changed.
Note, however, that in the general case, when applying AOP
to evolve software, a specific aspect for each one of the
classes being evolved will be necessary, so better solutions
can be proposed In fact, AOP solutions becomes degener-
ated in the sense that an specific aspect must be generated

for each specific class/object being evolved if a real evolution
or adaptation functionality is required.

4. SIU EXTENSION SYSTEM

The GNU/EDMA environment, from its early versions, pro-
vides an extension system named SIU. SIU extension system
was introduced to provide an easy interface to existing sys-
tems, and the main philosophy behind it is to improve code
reuse even when this code belongs to a completely different
environment.

The SIU extension system allows to write special GNU/EDMA

classes, which are able to intercept any GNU/EDMA prim-
itive invocation and hence, providing a mechanism to trans-
late GNU/EDMA parameters and data to other systems, in
order to execute external code within an unique program-
ming interface. As a side effect, SIU system behaves as a
general GNU/EDMA primitive interceptor, that is, it can
intercept, for example, method invocations on a given ob-
ject and control how its code is executed, making easy to
execute code before or after the real one and even to prevent
execution at all.

Using the SIU extension system, it becomes easy to build up
a simple AOP system within the GNU/EDMA environment.
The special SIU classes containing the interception code are
called called SIU Prozies, and they are normal GNU/EDMA
classes implementing a specific interface.

The SIU Subsystem provides two types of proxy and three
levels of implementation. First type of SIU proxies are called
blind proxies. This kind has no information about external
interfaces, i.e. they know nothing about the interface of the
object they represent and simply forward primitives directly
without further checking, or relies on an external procedure
to get any interface information that is required. Second
type are non-blind proxies. These proxies rely on the in-
terface information provided by GNU/EDMA in order to
forward primitives. GNU/EDMA interface management is
out of the scope of this paper.

Additionally, irrespective of the kind of proxies, three im-
plementation levels are defined, which will determine the
degree of integration of the proxy with the GNU/EDMA
system. For our current discussion, implementation level
1 covers the classical join-point approach that is found in
current AOP solutions, i.e. object creation and destruc-
tion and method and property interception. Implementa-
tion levels 2 and 3 support the interception of specific dy-
namic GNU/EDMA features, like dynamic inheritance and
dynamic virtual method overriding. These levels are out
of the scope of this paper, but they provide an interesting
research direction in AQOP. Level 2 and 3 proxies can be-
come quite complex, mainly when the representative object
is in an external system where these features are not sup-
ported. For the purpose of this work, Level 1 SIU proxies
are used, since they cover most of the features provided by
other AOP/DAOP available systems.

Finally, note that the programming language neutral na-
ture of GNU/EDMA DAOP approach is provided as well
by the SIU subsystem. Special SIU proxies are in charge
of translating primitives from one system to another, at the

same time that other SIU proxies implement aspects. This
is the way to uncouple AOP issues from the programming
environment that is actually used.

4.1 Static Aspect Weaving with GNU/EDM A

GNU/EDMA does not face static weaving as it happens in
fully static systems like AspectJ [7]. This static behavior is
usually addressed at the source code level at compile-time,
and it is mostly independent of the underlying system. This
kind of weaving does not fit well in the fully dynamic nature
of the GNU/EDMA environment, but there is no technical
that prevents it to be implemented.

With static aspect weaving we mean pre-assigned weaving,
that is, the process of assigning aspects in advance to classes
or objects in the system. There are two possibilities for
doing this. The simplest way to associate an aspect to
a GNU/EDMA class is using the GNU/EDMA registry.
GNU/EDMA uses a global plain text file where classes are
registered in order to allow the system to control them.
Within this registry, it is easy to associate a SIU Proxy to
a given class simply by editing a text line. It can be con-
templated as the deployment descriptors that are used in
other systems [4, 5]. First, the SIU Proxy (Aspect) must be
declared, which is done by including the field IsSIUProxy=1
to mark the class as a SIU Proxy.

[CLASS49]

ClassName=L0OG_ASPECT
NameSpace=siu/aspects/examples
Machine=1386
OperatingSystem=LINUX
Implementation=1ibL0OG_ASPECT.so
IDFParser=EDMAIDF

IsSIUProxy=1

MajorVer=0

MinorVer=0

CurrentVer=49

Then, any other class in the system can be associated with
this SIU Proxy by including the field SIUProxy=L0G_ASPECT
in its registry descriptor. Bellow there is a simple example.

[CLASS50]
ClassName=TARGET_CLASS
NameSpace=examples/aspects
Machine=i386
OperatingSystem=LINUX
Implementation=1ibTARGET_CLASS.so
IDFParser=EDMAIDF
SIUProxy=L0OG_ASPECT
IsSIUProxy=1

MajorVer=0

MinorVer=0

CurrentVer=50

From this point on, any application in the system that cre-
ates an instance of the class TARGET_CLASS will associate
the LOG_ASPECT class to that instance and get a log of any
method invocation on it.

Additionally, applications can choose to associate a SIU
Proxy with an object when the object is instantiated, so
it is possible for applications to choose which objects of a
given class will be actually logged. To perform this, the ap-
plication must prefix the SIU Proxy name to the name to
be instantiated, as the following example depicts.

0OBJID target = edma_new_obj ("LOG_ASPECT:A_CLASS");

At the practical level, dynamic weaving is carried out. How-
ever, the possibility to weave/unweave aspects to specific

classes provides also a mechanism to permanently attach/deattach

aspects to specific classes in an easy way. From this point
of view, this GNU/EDMA feature can be seen more like
a load-time component adaptation mechanism that like an
static AOP solution.

4.2 DynamicAspect Weavingwith GNU/EDM A

GNU/EDMA also allows to associate SIU Proxies (i.e. apply
aspects) to running objects, as well as to remove a previously
associated proxy while the application is running. For this
purpose two primitives are provided:

e edma_attach_proxy (target, proxy): This primitive
will attach the proxy (aspect) to the object target.

e edma_deattach_proxy (target): This primitive will
detach any proxy previously attached to target.

Following with our frame example, a fragment of code that
illustrates how to use these primitives is shown below.

OBJID target = edma_new_obj ("TARGET_CLASS");
edma_attach_proxy (target, "LOG_ASPECT");

edma_deattach_proxy (target);

This code fragment creates a normal GNU/EDMA object
and, at some point of its execution, attaches the LOG_ASPECT
SIU proxy to that instance. From that point on, any method
invocation on target will be logged to the console until
when, at some point later on application execution, the
proxy is detached and the logging stops.

5. A GNU/EDMA ASPECT EXAMPLE

Finally, a simple coding of the complete logging aspect that
is used throughout the paper is presented in this section in

order to illustrate the whole AOP process with GNU/EDMA.

As indicated above, SIU proxies are simple GNU/EDMA
classes which implement an special interface. When applied
to an object or class, any method invocation on that object
or on any instance of that class is intercepted by the proxy,
and a chance to inject code or change execution is provided.

The relevant GNU/EDMA primitives intercepted by level 1
proxies are immediately described:

e NewObj is executed when a new instance of a class is
created. The class must have associated a SIU proxy.

e FreeObj is executed when an instance of a class is
destroyed.

e WProp3 is executed when a property (or member
variable) of a target object is written.

¢ RProp3 is executed when a property (or member vari-
able) of a target object is read.

e Met3 is executed when a target object method is in-
voked.

For our logging example, the SIU proxy only needs to im-
plement the Met3 method to log any method invocation on a
given object. The simplest implementation for this method
is shown bellow:

ESint32 EDMAPROC
LOG_ASPECTMet3 (OBJID proxy, OBJID target,
EPChar method, EPVoid args)
{
/* BEFORE code */
edma_printf ("Method %s is about to be executed "
"on object %d", method, target);

edma_met3_pargs (target, method, args);

/* AFTER codex/
edma_printf ("Method %s object %d finish",
method, target);

This code fragment logs a message each time that a program
enters any method on the target object and each time that it
is left. From the point of view of the GNU/EDMA program-
ming environment, this aspect is a normal GNU/EDMA
class. Now, the aspect can be dynamically weaved to any
class or object in the system using the different possibilities
described in previous sections.

6. CONCLUSIONSAND FUTURE WORKS
This paper introduces the GNU/EDMA SIU extension sub-
system and its application to AOP/DAOP. This GNU/EDMA
based approach provides the following advantages when com-
pared with current available similar systems:

e Aspects can be applied to different programming envi-
ronments and can be written using different program-
ming environment.

e It homogeneously integrates within the GNU/EDMA
programming environment. No additional aspect-based
language must be learned and there are no differences
with respect to normal development of GNU/EDMA
classes.

e It provides a dynamic AOP solution that complies with
the “all-dynamic” philosophy behind the GNU/EDMA
system.

Up to the knowledge of the authors, GNU/EDMA SIU Prox-
ies are the first approach to face language and program-
ming environment neutral approach to AOP. Although there
are some approaches to support different programming lan-
guages, as the proposed in [9], which uses the .Net frame-
work to achieve this aim, GNU/EDMA approach is more
general than a simple programming language support, since
it can also be used in different programming environments,
like component-based systems or distributed systems.

Since SIU Proxies were not developed with AOP in mind,
additional work is required to deal with common AQOP issues
that are already addressed by other platforms. From this
point, the results obtained by other research efforts in the
DAOQP field will be a valuable help to complete a DAOP
platform on top of GNU/EDMA.

At present, GNU/EDMA provides partial support for Perl,
Python and C# programming languages throughout SIU
proxies, as well as the C/C++ native interface. Java in-
tegration is also planned. These proxies are ready to use
these programming languages as implementation languages
for GNU/EDMA classes, and then use them from the main
application programming interface. At the same time, for
each programming language it is required to write a simple
interface module to allow the access to GNU/EDMA prim-
itives.

A key point at this moment is to clearly define where AOP/DAOP

and other specific software evolution techniques will be more
useful, in order to clearly delimit the scope of applicability
for each one of them. The incorporation of DAOP support
to the GNU/EDMA system has allowed to use evolutionary
techniques and aspect-oriented solutions within a unique en-
vironment, thus making easier to bound the applicability of
these techniques.

SIU Proxies of level 2 and 3 may also provide interesting
results for AOP that have not yet been explored. At these
levels, aspects can be weaved when super or subclasses are
attached or detached to a given object and when virtual
methods are overridden. Since dynamic inheritance is not
a common feature on current systems, this is still an unex-
plored application field for aspects.

Finally, the GNU/EDMA programming environment also
provides a very powerful MOP (Meta-Object Protocol) tool,
which provides with a quite simple interface for quick testing
of new ideas in the general OOP world and, in particular,
the AOP field.

7. ADDITIONAL AUTHORS

No additional authors

8. REFERENCES
[1] David Martinez GNU/EDMA Web Page
http://www.gnu.org/software/edma

[2] Sun Microsystems JavaTM Virtual Machine Debug
Interface Reference Available on-line:
http://java.sun.com/j2se/1.3/docs/guide/jpda/jvmdi-
spec.html

[3] Robert Hirschfeld AspectS ?- Aspect-Oriented
Programming with Squeak Objects, Components,
Architectures, Services, and Applications for a
Networked World, pp. 216-232, LNCS 2591, Springer,
2003

[4] R. Pawlak, L. Senturier, L. Duchien, G. Florin JAC: A
flexible solution for aspect-oriented programming in
Java Reflection 2001, Koyota, Japan 2001

[6] A. Popovic, T. Gross, G. Alonso Dynamic weaving for
aspect oriented programming 1st Intl. Conf. On
Aspect-Oriented Software Development, Enshede, The
Netherlands, 2002

[6] O. Spinczyk, A. Gal, W. Shroder-Preikschat Aspcet
C++: An aspect-oriented extension to the C++
Programming Languages Fortieth Int. Conf. on
Technology of Object-Oriented Languages and
Systems, TOOLS, Pacific, 2002

[7] Palo Alto Research Center http://aspectj.org

[8] David Martinez AGNES: GNU/EDMA Mobile Agents
http://www.dei.inf.uc3m.es/ dmartin/agnes

[9] Wolfgang Schult, Andreas Polze Dynamic
Aspect-Weaving with .NET Workshop zur
Beherrschung nicht-funktionaler Eigenschaften in
Betriebssystemen und Verteilten Systemen, TU Berlin,
Germany, 7-8 November 2002

