
IMGVM: An Image Oriented Virtual Machine for
Real-Time Computer Vision

David Martínez Oliveira, Fernando Martín Rodriguez Xulio Fernández Hermida
ETSIT Communication and Signal Processing Deparment

University of Vigo
Vigo, Spain

Email: dmartin@uvigo.es, fmartin@tsc.uvigo.es, xuliofh@uvigo.es

Abstract— In this paper a simple architecture for an image
oriented virtual machine targeted to computer vision applications
is introduced. This virtual machine provides a low level approach
to image processing working on very high level data structures
which allows developers to setup the sequence of processing
actions in an easy way. Additionally, this architecture provides
a common environment for prototyping and production systems
simplifying the deployment process of the final application.

I. INTRODUCTION

Computer vision applications[5] involve several processing
stages in order to solve a given problem. Independently of
the application domain, any computer vision (CV from now
on) applications implies, as a minimum, an image processing
[3][4] stage where the source image captured with a given
device is processed to make easier the work of later stages
(parameter extraction, classification, etc...).

Image processing stage must be fast because there are much
more things to do in a very short time (40 ms for typical video
processing). Moreover, most of these systems must work in
industrial environments where small and embedded appliances
are required in order to integrate the CV system into the
product line where it will work.

There are several systems and tools to build up this kind
of systems, mainly nowadays, where embedded PC-based
solutions can be used instead of full custom developments.
In this last line, researchers can find tools like Matlab [1]
which provides a very complete image toolbox or IDL [2]
also used for image processing applications. But in real
world, computer vision applications usually work on specific
libraries (commonly associated to the chosen hardware for the
application) and own code development using some middle
level languages like C/C++. There are as many libraries as
hardware vendors and some general solutions as the Intel
Computer Vision Library (OpenCV)[9], which sometimes are
cumbersome for the application being developed.

In this scenario, there are two main ways to carry out
application prototyping. In the first one, researchers can work
directly on the final system which, in general, makes im-
plementation and testing a complex task involving editing,
compiling and testing cycles in a low-level environment.

In the second one, researcher works with tools like the
ones named above (Matlab, OpenCV) that, once the system
is finished, need to be translated to the final application

environment, which implies a new (but shorter) testing process.
Moreover, running a tool like Matlab in and industrial embed-
ded system will require a big amount of resources, normally
not available in these kind of systems.

In general, tools that are good for prototyping are not good
for final systems because they are in general slower that direct
coding in an intermediate programming language.

From these two main choice, the second one has the addi-
tional advantage of providing researchers with an interactive
environment where testing their application in an easy and fast
way. This is important for solving new problems where some
probe and error cycles are required to reach the good solution
for that problem.

Therefore, a common solution to allow easy prototyping of
CV systems that could be used directly on the final system,
would be of great interest reducing the required work to
develop and setup a computer vision application.

In this paper we propose a simple approach to image
processing for real-time computer vision applications built on
the idea of an image-based virtual machine. Researchers will
use a very low level language similar to assembler but working
in very high level data structures like images or regions of
interest.

This system allows easy prototyping of systems writing
small assembler programs based on a given set of op-codes
which represent common image processing algorithms, in a
similar way to scripts in software applications. These algo-
rithms are implemented in a middle or low level programming
language so they will run at high speeds. At the same time, the
system is highly configurable so virtual machine parameters
can be easily modified for prototyping operation and then
reduced for the final system just editing a configuration file.

This paper is organised as follows. Section II describes
the architecture of our image-based virtual machine. Section
III shows how to manage this virtual machine. Section IV
describes the virtual machine assembler language and finally,
Section VI presents the current implementation and results
achieved in this work.

II. IMGVM ARCHITECTURE

The IMGVM (IMaGe Virtual Machine) was modeled
against a typical register processor where each register can



Fig. 1. IMGVM Block Diagram

contain complex data structures like images or regions of
interest. Figure 1 shows the general IMGVM block diagram.

The different blocks shown in figure 1 are summarised
below:

• An Instruction Pointer Register
• A set of gray-scale and color image Register
• A program memory block
• A flag register
• A data memory block
• A stack memory block
• A set of op-codes.

Any of the items of the IMGVM can be configured along
with the program running in a given CV application. This
includes the number of registers the machine will use, the
size of the program, data and stack memory blocks and even
the set of op-codes the virtual machine will understand.

IMGVM provides a set of default op-codes which provides
very simplistic operations on registers (images), however,
programmers can provide its own opcodes implemented as
independent shared libraries, so the final application will
only contain the op-codes it needs. Most of the basic image
processing algorithms has been implemented this way and
included in the system.

The virtual machine does not know anything about in-
put/output tasks. This makes it very simple, and more impor-
tant, multiplatform. Even when our current implementation
uses C language and runs in GNU/Linux environments, the
implementations doesn’t make use of any system specific
functionality making it highly portable.

After this general description of the virtual machine we will
go deep in each component throughout next sections.

A. Registers

As introduced early in this text, the IMGVM registers are
very high level object like images or regions of interest (ROI
hereinafter). The data structures associated to each IMGVM
register are fully open so any developer can add additional
objects/datatypes like segments, points, vectors or whatever

required for a given application. Adding further objects implies
adding further op-codes able to work on them (see section IV-
A below).

Current implementation only works on images and ROIs.
In general the maximum size of images must be fixed after
starting the virtual machine. It would be easy to modify the
system to work with arbitrary size images but this approach
makes the system more uniform, faster, and ROIs can be used
to work with subimage data.

The system automatically manages color and grey scale
images providing two separated sets of registers to work with
each kind of data. So, developers can choose to work on color
images or gray-level images to build up hybrid algorithms
working on both kinds.

It will be easy to extend the system to support other kinds
of images (1-bit monochrome, integer/float images, etc...), but,
until now, none of these options was required.

B. Program Memory

It is in the program memory where the sequence of op-codes
composing the program resides. The virtual machine has an
special register called instruction pointer (IP) which, as usual,
points to the current program memory position being executed,
as usual.

Each program memory position has a fixed size able to
contain different types of data. These types of data are listed
below:

• Op-code: A valid IMGVM op-code from currently se-
lected one.

• Register: A reference to a IMGVM register
• Integer: An integer value
• Float point number: A floating point value.

Several op-codes require some parameters which are stored
sequentially in the program memory, and just after it. Op-code
implementation makes the work of decoding these parameters
and update the IP accordingly. Suitable macros are provided
to implement parameter decoding in an easy way.

C. Flags

In the same way of every component of the IMGVM, system
flags are also configurable but appropriated op-code should be
provided in order to make them useful.

Default IMGVM configuration provides the following flags:

• ROI: used to indicate that a given operation generates
ROI in a given register or modifies it.

• TYPE: used to indicate that a given operation was applied
to a grey-level image or on a color image. In the case that
the operation involves both types, the bigger one will be
selected.

• OVERFLOW: used to indicate that a given operation
produced an overflow in the registers it affected.

IMGVM provides generic conditional jump instructions to
allow applications make use of these flags. Users adding their
own flags should add appropriated instructions to use them.



III. IMGVM INTERFACE LAYER

This section describes the IMGVM programming interface
details required to use it in CV applications.

A. Internal Data Structures

Due to the very simple design of the IMGVM, no in-
put/output functionality is provided by the system then, in
order to perform this kind of operation, IMGVM users must
access internal data structures of the system. These internal
data structures are fully encapsulated independent entities.
Actually they can be used out of the IMGVM environment.

The main internal data structure is GRTK_ITEM which is in
fact the type of the IMGVM registers. This structure can hold
different data types which can be managed uniformly through
a simple interface. Basic types of GRTK_ITEM structure are
the following:

• GRTK_IMAGE24: A true-color image
• GRTK_IMAGE8: A grey-scale image
• ROI24: a true-color region of interest
• ROI8: a grey-scale region of interest.

Additionally, each GRTK_ITEM has two important fields
from the programmer point of view. First one is the
subitems field which holds other GRTK_ITEM items which
are parts of the main item. For instance, regions of interest
within a given image are stored in this field.

The other important field in GRTK_ITEM is the metadata
field. This field is a generic vector which can be used to store
extra information in a given item which can be used later in a
IMGVM program. This field can also be used to transfer data
from the virtual machine to the main application in a very
simple way.

B. IMGVM Interface

Virtual machine control and configuration interface is lo-
cated in the IMGVM Interface layer. This interface allows
programmer to configure each IMGVM parameter, to load
op-codes lists, to transfer data to/from virtual machine/host
application and to load and run IMGVM programs. Section
V-B shows the use of this interface. Detailed description of it
is out of the scope of this paper and is covered in [8]

IV. IMGVM ASSEMBLER

The IMGVM provides a simple built-in assembler to inject
code within the virtual machine from an external text file.
Op-code mnemonic code is composed of a reserved keyword
plus a variable set of parameters. Parameters can be integer
numbers, floating-point numbers or virtual machine registers.

Virtual machine registers are named as follows. Color
registers begins with character ’c’ followed by a number that
indicates the register number. Grey-level registers begins with
character ’g’ followed by a number indicating the register
number.

Assembler source code can include labels as usual. Simple
strings followed by the ’:’ character.

There are two special reserved keywords:

int grtk_op_sadd (GRTK_IMGVM vm, GRTK_IMGVM_OPCODE *p)
{
GRTK_ITEM o1, o2;
int off, size, val, s;
unsigned char *a, *b;

GRTK_OPCODE_START(p); /* START Opcode Macro*/

/* Opcode Decoding SOURCE_REG, TARGET_REF, SCALAR_VALUE */
o1 = GRTK_DECODE_IMG(vm);
o2 = GRTK_DECODE_IMG(vm);
s = GRTK_DECODE_INT(vm);

/* Get pointers to image data and image buffer size */
a = (unsigned char *) o1->data;
b = (unsigned char *) o2->data;
size = o1->w * o1->h * (o1->type == GRTK_ITEM_IMAGE24 ? 3 : 1);

/* BEGIN: Real opcode implementation */
for (off = 0; off < size; off++)

{
val = *(a + off) + s;
*(b + off) = (val > 255 ? 255 : val);

}
/* END: Real opcode implementation */
GRTK_OPCODE_RETURN; /* END Op-code Macro*/

}

Fig. 2. Scalar Addition Op-Code Implementation. Example of instruction
decoding using helper macros

• END that indicates the end of the code and will stop the
virtual machine execution

• DATA that indicates that that program memory position
contains data, typically op-code parameters.

A. Op-codes

IMGVM provides a default set of basic built-in op-codes
which perform common operations on images. However,
IMGVM users can provide their own set of op-codes for a
given application as a shared library that can be included
within the virtual machine directly.

As mentioned before, implementation of IMGVM op-codes
implies the implementation of the op-code decoding which can
be done easily using the helper functions and macros provided
by the system. Figure 2 shows a simple example on how to
implement a simple SADD (scalar addition) instruction which
adds an scalar value to every pixel in a given image and stores
result in a given target image.

As can be seen in Figure 2 implementation of new op-codes
is very simple using the helper macros provided by the system.
Op-code implementation functions receive two pointers. First
one points to the virtual machine itself so the code can access
registers and flags in order to modify them. The second pointer
points to the program memory address of the instruction being
decoded. This parameter allows to execute a given op-code out
of the virtual machine program memory block and can be used
for debugging purposes.

Table I summarises currently implemented op-codes in
IMGVM.

V. USE CASE

In this section a real system using the IMGVM is described.
It is a simple optical tracking system based on color segmen-
tation and was developed as part of a bigger project on gesture
recognition for virtual reality environments.



; GRTK Optical Tracking System. Image Processing Stage
; (c) GPI-RV, 2006
;

; Color segmentation of captured image and thresholding
COLOR_ANN_CLASSIFIER c0 c1 0
COLOR2GREY c1 g1
GREY_THRESHOLD g1 g4 100

; Locate Regions of Interest to speed up processing
ROI g4 g5
JNROI FINISH : Jump if NO ROI

; Remove background noise and try to remove holes in object
; Opening
ERODE g4 g5 2
DILATE g5 g6 2
; Extract Parameters.
; Classifier expects stat parameters in g2
COPY g5 g3
STATS g3 g4
; Display stuff for debugging
CORRECT_ROT g3 g4
DILATE g4 g3 3
ROI g3 g2
DRAW_ROI g3
FINISH:
END

Fig. 3. Optical Tracking System IMGVM code. This example locates the
user hand, computes image moments and stores them for further processing
by main application

A. Optical Tracking

In this application, real-time video must be processed in
order to extract the position of the user’s hand or some kind
of pointing device. For real-time virtual reality interaction a
quite high processing frequency is required in order to provide
a realistic sensation to users.

The IMGVM system was used to carry out the image
processing stage of the system which consists of making the
segmentation of the pointing device and the extraction of some
basic data like position and orientation.

Figure 3 shows the basic code of the image processing stage
for this optical tracking system.

The code is very self-explanatory since mnemonics where
chosen to match common image processing algorithms. As can
be seen in figure 3 the system performs a very simple color
segmentation and immediately converts the segmented image
to grey-scale in order to perform a faster processing.

Color segmentation (COLOR_ANN_CLASSIFIER) is car-

TABLE I

CURRENT OP-CODES GROUPS INCLUDED IN IMGVM

Group Description
Morphology Basic Morphology operands (erode, dilate,

. . . )
Arithmetic Arithmetic operation (sum, plus, diff, . . . )
Logical Logical operations (and, or, xor, . . . )
Comparison Comparison operations (gt, lt, eq, . . . )
Statistics Statistics (stat, k-mean, . . . )
Color Color Manipulation (grey, rgb, hsv, compo-

nent . . . )
Filters Linear Filters, Edge Detection, Rank Filter,

. . .
Geometric Geometric operations (rotation, scaling, . . . )
Segmentation Color/grey segmentation, ANN clasifiers . . .

01 GRTK_ITEM img, result;
GRTK_IMGVM vm;

/* Initialize the IMGVM */
05 vm = grtk_imgvm_new (image_w, image_h);

/* Get the GRTK_ITEM associated to color register 0*/
item = grtk_imgvm_get_reg (vm, COLOR, 0);

10 /* Load code in the virtual machine */
grtk_imgvm_load_code (vm, "my_code.ivm");

/* Main loop processing real-time images */
while (1)

15 {
image_data = get_image_from_video_src ();
/* Update item with new data which is associated with c0 register*/
grtk_item_img_set (item, image_w, image_h, image_data);

20 /* Run code in the virtual machine */
grtk_imgvm_run (vm);

process_data (vm);
}

Fig. 4. Optical Tracking System Main Application. Using IMGVM high
level interface from a real CV application

ried out by a simple one-neuron perceptron neural network
(actually it is managed as the simplest MLP[6]) which has
been externally trained and whose parameters are injected in
the virtual machine by the main application. Main application
loads MLP parameters in data position 0 (third parameter) so
different network configurations could be tested.

Then, the program looks for regions of interest in the image
and finishes processing if no ROI was found. This is done
because the rest of the processing sequence is very computa-
tionally expensive if the whole image must be processed (and
not a smaller ROI).

Extracted information data is stored in the metadata field
of register g2 (this is done by the STAT op-code) where the
main application expects to find them for transmission to the
VR system.

B. Main Applications

The main optical tracking application starts the virtual
machine and loads code on it. Then begins acquiring images
from a video source and, for each captured image, the program
in figure 3 is executed and processed. Extracted information
is sent through the network to a render station where a pointer
object is drawn in the virtual environment.

Figure 4 shows the parts of the main applications related to
IMGVM.

The first thing to point out is the simple interface provided
to upper level applications. This simple interface makes very
easy the use of the system at the same time that keeps image
processing stage totally uncoupled of the whole system. The
only exception is the process_data function.

The second question to point out is the way data are inserted
within the virtual machine. As said above in the text, IMGVM
does not provide any input/output facility, so it is responsibility
of the higher level of the application to inject data in the virtual
machine.



This process is carried out accessing the virtual machine
registers directly (line 8 of figure 4). In the main loop the
application injects data acquired from the video source in this
internal data struct (GRTK_ITEM) before executing the code
in the virtual machine (line 21).

The process_data function also needs to access these
data structures in order to extract information from a given
register metadata or from somewhere else in the data memory
block.

VI. IMPLEMENTATION AND RESULTS

The system described along this paper has been imple-
mented for the GNU/Linux operating system and used suc-
cessfully in the application described in section V for optical
interfacing to virtual reality environments. Figure 5 shows two
screenshots of the application at work.

Fig. 5. Up image shows the IMGVM training application at work. Down
Image shows the test virtual reality environment

Description of the virtual reality environment is beyond the
scope of this paper. The unique remarkable comment about it
is that it runs in a different machine and receives interaction
commands from the IMGVM system from the network.

The optical tracking system was developed using the
IMGVM. It has been integrated in a bigger application that
provides a suitable virtual reality user interface. This IMGVM
Test Application (ITA) does the following actions:

• Image capture and injection in the embedded IMGVM
• Visualization of images stored in internal IMGVM regis-

ters
• Extraction of data computed by the IMGVM programs
• Interpretation of these data to generate tracking and

gesture recognition information

• Transmission of this information to the remote VR engine
through the network

In this application the IMGVM virtual machine was stati-
cally linked to a general training application using OpenGL
for rendering (this is only an user helper feature not required
for a final implementation). The up part of figure 5 shows the
main screen of the ITA (IMGVM Test Application).

Its final size on disk is 76 Kb and spends less than 15ms
in processing 256x256 images in a AMD K7 1GHz processor.
These values make it suitable for embedded applications. At
the same time it keeps the simplicity of developing in desktop
computers.

VII. CONCLUSIONS

In this paper we have presented a simple approach to real-
time video processing based on a high-level abstraction of a
typical processor architecture. Our system is completely con-
figurable in order to adapt it to different deployment platforms,
running from embedded systems to high-end computers.

Our current implementation, presented along this paper,
provides a simple environment to prototyping CV applications
based on well-known image processing algorithms. At the
same time, provides an easy framework for implementing new
implementations (op-codes) and quick testing of them, using
the IMGVM Test Application (ITA).

This approach provides a single development environment
with the required simplicity and interactivity for prototyping
development. At the same time, it allows to directly translate
that prototype to the final real system.

The key point in the system described is the duality between
high and low level development.

On one hand the system is programmed in a very low-level
assembler language that allows engineers to concentrate on the
problem to resolve at the level of well-known image process-
ing algorithms (op-codes). This is the classical approach for
this kind of applications.

On the other hand the virtual machine abstraction is defined
at a very high level where machine registers hold complex data
structures (encapsulated to developer) and machine op-codes
represent complete algorithms instead of basic operations at
the machine level.

A real optical tracking system was developed and tested
in a real VR environment, and was improved to its use in a
distributed environment common in VR deployments.

Finally, the simplicity of the approach and its hardware-
like design introduces a new research line about real-hardware
implementation using modern programmable devices. From
this point of view, the presented approach will allow high per-
formance hardware implementations in a simple way, closing
the gap between software and hardware for computer vision
applications.

VIII. FUTURE RESEARCH

The main research line should be the implementation of
the IMGVM directly in hardware. The simple design of the



solution exposed in this text makes easy its implementation in
custom hardware.

From this point of view, the separation of op-codes from the
virtual machine itself provides a clear block separation for an
FPGA implementation. So, hardware engineers could convert
each op-code implementation in an FPGA core which will
allow simple configuration. Furthermore the same machine
code used in the software version can be feed in the hardware
implementation obtaining the same results.

This possibility will make the development of computer
vision applications much easier since main development would
be carried out in a normal computer and then be easily
translated to different embedded solutions ranging from small
computers (PC-104[10]) to full hardware implementation (FP-
GAs) assuming there is an VHDL[7] implementation of the
used op-codes.

So future research lines will focus in two main topics:

• Basic hardware implementation of the virtual machine
• Automatic procedures to translate op-code implementa-

tions to VHDL in order to easily plugged to a pro-
grammable device.

The main issue with a hardware implementation of this
virtual machine is memory amount. Current programmable
devices do not allow to define big enough RAM/Registers
units to hold images. Maybe future devices would provide
such capacity, but meanwhile, a hardware implementation
of IMGVM should use external memory to hold its regis-
ters. Op-code, as pointed above, will be deployed like cores
and FPGA reconfiguration facilities will provide the required
infrastructure to simulate shared libraries on our software
implementation.

Note that hardware implementation of image processing
algorithms can be improved due to the inherent parallelism of
them, allowing the hardware system to work simultaneously
in several parts of the image.

Both lines are in an early stage at this moment.
Other interesting research line is improving the system

interface to generate op-codes from matlab code allowing
researchers to keep working on Matlab, but providing an easy
way to translate their algorithms to real systems using our
IMGVM.

REFERENCES

[1] Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins. Digital Image
Processing Using MATLAB, Prentice Hall; 1st edition 2003

[2] Liam E. Gumley Practical IDL Programming, Morgan Kaufmann; 1st
edition, 2001

[3] Rafael C. Gonzalez, Richard E. Woods. Digital Image Processing Prentice
Hall; 3rd edition 2006

[4] Jain, Anil K. Fundamentals of Digital Image Processing. Englewood
Cliffs, New Jersey: Prentice Hall, 1989

[5] Shapiro, Linda G., Stockman, George C. Computer vision Prentice Hall,
2001

[6] Haykin, Simon S. Neural networks : a comprehensive foundation. Engle-
wood Cliffs (New Jersey) : MacMillan, cop. 1994

[7] Volnei A. Pedroni. Circuit Design with VHDL. The MIT Press (2004)
[8] D. Martínez, "IMGVM Specification 2.0," unpublished. Technical Report

available at http://wgpi.tsc.uvigo.es/tech_reports
[9] Intel Corp. "Open Source Computer Vision Library" unpublished.

http://www.intel.com/technology/computing/opencv/
[10] PC-104 Embedded Consortium. "PC-104 Specification Version 2.5"

unpublished.
http://www.pc104.org/technology/pc104_tech.html


